

Review Article

100 Years of Horticultural Research in TNAU

C. Ravindran, R.Balakumbahan I. Muthuvel and J, Rajangam Associate Professor and Head, Horticultural Research Station, Kodaikanal Associate Professor and Head, Horticultural Research Station, Thadiyankudisai Professor and Head, Department of Fruit Crops, HC & RI, Coimbatore Dean, Horticultural College and Research Institute, Periyakulam https://doi.org/10.5281/zenodo.10049951

Introduction

The Tamil Nadu Agricultural University (TNAU) had its genesis from establishment of an Agricultural School at Saidapet, Madras, Tamil Nadu, as early as 1868 and it was later relocated at Coimbatore. In 1920 it was affiliated to Madras University. TNAU assumed full responsibilities of Agricultural Education and Research and supported the State Agricultural Department by delivering research products. Till 1946, the Agricultural College and Research Institute, Coimbatore, was the only Institute for Agricultural Education for the whole of South India. In 1958, it was recognized as a Post-graduate Centre leading to Masters and Doctoral degrees. The Agricultural College and Research Institute, Madurai was established in 1965. These two colleges formed the nucleus of the Tamil Nadu Agricultural University while it was established in 1971. The number of varieties released from TNAU in fruits, vegetables, flowers, plantation crops, medicinal and aromatic crops for the benefit of farming communities

S.No.	College	Year of	Place
		Establishment	
1.	Horticultural College and Research	1971	Coimbatore
	Institute		
2.	Horticultural College and Research	1990	Periyakulam
	Institute		
3,	Horticultural College and Research	2011	Trichirapalli
	Institute (Women)		
4.	Horticultural College and Research	2021	Zennur
	Institute		

Horticultural College & Research Institute, Periyakulam

The Horticultural College & Research Institute (HC & RI), one of the constituent colleges of Tamil Nadu Agricultural University, is located at Periyakulam, on the Theni-Dindigul high way in Tamil Nadu State (NH). The famous upper Pulney hill ranges featuring nearby offer natural beauty and scenic frontage to this unique Institute. Geographically, the College campus is situated at 10'N latitude with an elevation of 300m above MSL. The climatic conditions are quite congenial for cultivation of a wide array of horticultural crops. This Institute provides both teaching and research opportunities of high order in an exceptionally pleasant environment. The College Campus encompasses over 100 hectares of farm lands to cater to the needs of teaching, research, training, seed production and plant propagation activities. This is the only full-fledged Institute providing horticulture education in Southern Peninsular India.

Genesis and Growth

A Fruit Research Station was set up in 1957 at Periyakulam, with a view to meet the needs and aspirations of the fruit growers of the erstwhile Madurai district. In the year 1971, Horticultural Research Station (HRS), Periyakulam, was developed which marked the expansion of the research mandate to all major horticultural crops. Commendable progress in fruit and vegetable research is achieved. The centre was upgraded in 1990 as a full-fledged teaching and research institute.

The Horticultural College and Research Institute for Women, Tiruchirappalli

The Horticultural college and Research Institute for Women (HC&RI (W)) a constituent college of Tamil Nadu Agricultural University was established during the year 2011 in the Srirangam constituency at Navalur kuttapattu, Tiruchirappalli. This institute is offering B.SC.,(Horticulture)/ B.Sc.,(Hons.) Horticulture programme exclusively for women to generate adequate women graduate in horticulture to meet the future demand for horticultural development. The undergraduate programmes in B.Sc (Hort.) and B.Sc. (Hons.) Horticulture is a four year degree programme. The curriculum is designed to develop candidates suitable for various sectors viz., agricultural extension, research, banking and private sector.

The institute provides comfortable learning environment by means of well-established academic block with scientific laboratories, modern digitalized class rooms, computer lab, exhibition hall, instructional farm, protected structures, ornamental garden, high density demonstration block in guava, modern library with huge volume of text books, e-resources, well established auditorium, students counselling and placement, student club, new ladies hostel for comfortable stay with all amenities, sports and games facilities etc., for holistic development of mind and body.

S.No.	Station	Mandate	Year of	Place
		Crops	establishment	
1.	Coconut Research Station	Coconut	1963	Aliyar Nagar
2.	Coconut Research Station	Coconut	1958	Veppankulam
3.	Horticultural Research	Temperate	1988	Ooty
	Station	fruits and		
		Vegetable		
		crops		
4.	Horticultural Research	Coffee,	1976	Yearcaud
5	Vegetable Research Station	Jack and	1981	Palur
5.	vegetable Research Station	Vegetables	1701	
6.	Information and Training	Ornamental	2000	Chennai
	Centre	crops		
7.	Turmeric Research Centre	Turmeric	2021	Bhavanisagar
8.	Floriculture Research Station	Flower crops	2008	Thovalai
9.	Grape Research Station	Grape	2014	Theni
10.	Horticultural Research	Temperate	1971	Kodaikanal
	Station	fruits and		
		vegetable		
		crops,		
11.	Horticultural Research	Pepper,	1957	Thadiyankudisai
	Station	Coffee,		
		Mandarin		
		Orange,		
		Cinnamon,		
		Avocado,		
		Chow-chow,		
		Vanilla and		
10	Hortioultural Descende	Hill banana.	1002	Dechinensi
12.	Station Kesearch		1772	reciliparai
13.	Citrus Research Station	Citrus	2015	Sankarankovil

Table 2. Horticultural Research Stations under TNAU

Table 3.Horticultural Crops varieties released from different colleges and Research Station of TNAU

S.No.	Сгор	Varieties	Year of Release	Special feature
Ι	Fruit Crops			
1.	Mango	PKM 1	1981	It is a clonal selection from Chinnaswarnarekha and Neelum. Yield of 336 fruits (102.7kg/tree/ha).
		PKM 2	1990	It is a hybrid between Neelum and Mulgoa.

		PAIYUR 1	1992	This is a clonal selection from Neelum
				suitable for high density planting (400
2	Banana	<u>CO 1</u>	108/	It is akin to hill banana Virupakshi
2.	Dallalla	COT	1704	(AAB) The mean bunch weight is
				(AAD). The mean bunch weight is $10.57 kg$
3	Citrus	PKM 1	1990	It is a selection from Kadayam type Tree
5.	Acid Lime		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	is vigorous. Fruits can be harvested
				throughout the year.
4.	Sapota	CO.1	1972	It is a hybrid clone of the cross between
	···· I · ···		-	Cricket Ball and Oval. TSS 18° brix.
				yield of 175 to 200kg per tree
		CO.2	1974	It is a clonal selection from
				Baramasi. The yield is 175 kg per tree or
				11.8 tonnes of fruits per hectare per year
		CO 3	2000	It is a hybrid between Cricket Ball and
				Vavilavalasa. yields up to 157kg of
				fruits
		PKM 1	1981	It is a clonal selection from Guthi. yield
				of 3547 fruits (236kg) per tree per year.
		PKM 2	1992	hybrid between Guthi and Kirtibarthi
				varieties. yield of 80kg of fruits/tree
		PKM.3	1994	It is a hybrid between Guthi x Cricket
				Ball. The variety is adaptable to tropical
				plains of Tami Nadu and yields 14t/ha.
		PKM (Sa)	2003	It is a open pollinated clone of PKM
		4		1. It yields about 20.8 tonnes / hectare
		PKM (Sa)	2007	It is a selection from open pollinated
-	9	5	•••• •	seedlings yield potential of 18.70 t/ha
5.	Guava	TRY (G) 1	2005	It is Off season bearing, yield potential of 40.52 kg/tree (163.048 t/ha)
6	Panava	CO 1	1972	It is developed by sib mating Ranchi
0.	rupuyu	00.1	1772	type The plants are dwarf in stature and
				dioecious.
		CO.2	1979	It is pureline selection from a local type.
				A dioecious type with good papain yield
				(4-6g per fruit). The papain yield is 250
				to 300 kg per hectare.
		CO.3	1983	It is a hybrid derivative of the cross
				between CO.2 (female parent) and
				Sunrise Solo (male parent). It is a
				gynodioecious type
		CO.4	1983	Hybrid derivative of the cross between
				CO.1 (female parent) and Washington
			100-	(male parent). It is a dioecious type
		CO.5	1985	It is a selection from Washington type. It
				is a dioecious type suitable exclusively
			1001	tor papain production
		CO.6	1986	It is a selection from a giant papaya. The

				plants are dioecious.
		CO.7	1997	This variety (culture CP81) is
				gynodioecious in nature developed
				through multiple crosses
		CO8	2000	Dioecious, derived through
				improvement of CO.2. Yield - 200-230 t
				/ha
7	Pomegranate	CO.1	1983	It is a clonal selection. It yields
-	8			50fruits/tree, each weighing 340g
		YCD.1	1985	It is a clonal selection from Acc. No.455
				suitable for mid elevation of Shevrovs
				hills, average vield of 120 fruits/tree
8	Aonla	BSR.1	1995	It is a selection from Thimbam local A
C		20111		high vielder produces 155 kg of fruits
				per tree per vear.
9	Custard Apple	APK (Ca) 1	2003	It is a clonal selection from a high
-	I I I I	()		vielding type. It vields about 7300 kg
				fruits / ha
10	Fig	YCD.1	1993	It is an introduction Higher harvests are
-	8	TIMLA		made from each tree, the maximum
		FIG		being 4000 fruits.
11	Jack	PLR.1	1992	Palur.1 Jack is a clonal selection from
				Panikkankuppam local. Tree yield is
				about 80 fruits weighing around 900kg.
		PPI.1	1996	It is a clonal selection from
				Mulagumoodu local near Pechiparai
		PLR (J) 2	2007	It is a clonal selection from
				Pathirakkotai Local. vields 95 – 110
				fruits/tree/year
12	Manila	РКМ	2008	It is a open pollinated seedling selection
	Tamarind	(MT)1		from Soolakkarai yield is 125 kg / tree /
				year (11.85 t/ha).
13	Aocado	TKD.1	1997	Selection from germplasm pool. tree
				yields 264 kg of fruits per tree per year
				(26.4t/ha).
14	Apple	KKL.1	1987	Kodaikanal-1 apple is a selection from
				Parlin's Beauty. Heavy yield of 22t/ha.
II	Vegetable Cro	р		
1	Amaranthus	CO 1	1968	It is a selection from a type collected
				from Tirunelveli (Amaranthus
				dubius Mart exThell
		CO 2	1979	It is a selection from a germplasm type
				of Thanjavur, A. tricolor L.(syn. A
				gangeticus), It yields 10.75 tonnes/ha of
				greens.
		CO 3	1988	It is a selection from the local type and
				yields 30.72 tonnes of greens per hectare
		CO4 Grain	1989	It is a green cum grain type from <i>A</i> .
		type		hypochondriacus L., which is suitable for

				growing in plains and hills. It yields
				2,555Kg/ha of grain in addition 6,200
		CO 5	1008	It is a single plant selection from
		003	1990	(A = 166-1) leaf yield of 40
				t/ha,
2	Annual	PKM 1	1989	It is a pureline selection. The estimated
	moringa			yield per hectare is 52.8 tonnes.
		PKM 2	2000	It is a hybrid derivative developed by
				cross between MP31 (Eppodumvendran
				local) X MP28. The average number of
				fruits is 220/ tree/year,
3	Ash gourd	CO 1	1971	It is a selection from a local type from
				Tamil Nadu with crop duration of 150
			1000	days. It yields 20-25 t/ha
			1982	It is a selection from Coimbatore local
		Ash gourd		Hybrid between PAG 3 x CO 2. Yield -
		Hybrid CO		91.82 t/ha
4	Beet root	Ooty 1	1992	Selection from the local type. It yields
	20001000	000 1		on an average of 31.45t/ha of roots.
5	Bhendi	CO 1	1976	Pureline selection from the 'Red
-				Wonder'. It yields 12 tonnes per hectare
		MDU 1	1978	It is an induced mutant from Pusa
				Sawani through gamma rays.
		CO 2	1987	F1 hybrid between A.E. 180 and Pusa
				Sawani. yields 16.51 t/ha,
		CO 3	1991	F1 hybrid between Parbhani Kranti x
				MDU.1 (Hy.8) yield potential of 16-18
				t/ha
		COBhH1	2007	It is an VU Selection / PA 4 (T). yield
				potential of 22.1 t/ha
6	Bitter gourd	CO 1	1978	It is a selection from a local type
				collected from Thudiyalur (Long Green).
			1004	It yields 14.4 t/ha
		MDU I	1984	It is an induced mutant developed by
				gamma irradiation to local cultivar (MC
			2001	It is a E1 hybrid developed by a grossing
			2001	MC 84 x MDU 1 potential yield goes up
				to 51 29 tonnes/ha
7	Bottle gourd	CO 1	1981	It is a selection from a germplasm type
,	2000 gouru			yield of 36.0 t/ha.
		Bottle		crossing NDBG 121 x Arka Bahar.
		gourd		Yield - 79.03 t/ha
		Hybrid CO		
		1		
8	Brinjal	CO 1	1978	Pureline selection Yields on an average
				of 24.0 t/ha

		MDU 1	1070	and a stimulation from the line work in the set terms
		MDU I	1979	crop yield per hectare is 34 tonnes
		PKM1	1984	It is an induced mutant of a local type
		1 131/11	1704	called 'Puzhuthi kathiri' vields on an
				earled 1 uzhutin Katini . yields on an
		<u> </u>	1000	average of 34.750/na
		CO 2	1988	It is a pureline selection from the local
				variety 'Varikkathiri' yield is around 35
				t/ha
		PLR 1	1990	It is a reselection from a Nagpur
				ecotype. It yields on an average of 25.1
				t/ha
		KKM 1	1995	It is a pure line selection from Kulathur
				local
		PPI(B) 1		This is a single line selection (PPI (B) 1)
				from Karungal local type
				Vozbuthunongoj ond violdo 50 t/ho
		CODII 1	2001	F1 hybrid between ED 45 y CO 2 wield
		СОВПІ	2001	FT hydrid between EP 45 X CO.2 yleid
			2000	of 56.40 tonnes /na
		PLR(B) 2	2008	Single plant selection yield of 42t/ha
		COBH 2	2009	F1 hybrid developed by crossing
				EP65xPusa Uttam. Yield - 58-60 t/ha
		VRM1	2010	Pureline selection Yield - 40-45 t/ha
9	Butter beans	KKL 1	1991	Selection from a type collected from
				Vilpatti. yields 3.47 tonnes
10	Carrot	Ooty 1	1997	Selection from half-sib progeny of a
		v		local type It yields 49.1 t/ha with a seed
				vield of 700-1000 kg/ha.
11	Cauliflower	Ooty 1	1998	selection from OP progenies yields 46.4
11	Cuulinower		1770	t/ha in 120 days
12	Cerely	Ooty 1		Selection from the six germplasm types
12	Cerely			Viold Groops 30.5 t/ba Sood 1.40 t
				Tielu - Greens - 50.5 t/na Seeu - 1.40 t
10		0.4.1	2001	
13	Chakravarth	Ooty 1	2001	Pureline selection green yield of 28.9
	ikkeerai			tonnes/ha
14	Chilli	K 1	1964	Pure line selection from local Sattur
				Samba yields 1.8 tonnes of dry pods/ha
		K 2	1975	Hybrid derivative of the cross between
				B.70 A (Assam type) x Sattur Samba.
				yields 1.9 tonnes of dry pods
		MDU 1	1978	Induced mutant from K.1 chillies dry
				pod yield of 1809 kg/ha
		CO 1	1979	Reselection from Sattur Samba [CA (n)
				247], vields 2110 kg of dry pods per
				hectare.
		CO 2	1982	Selection from Nambiyur local 'Gundu'
			1704	type green pod vield is about 11 t/be
		DUM 1	1000	Cross between AC No. 1707 -
			1990	Cross between AC. No. $1/9/X$
			1001	CO. Tytelds on an average of 3.08 t/ha
		CO 3	1991	Selection from an open pollinated

				type15-18 tonnes of green chilli per
				hectare.
		PMK 1	1993	Cross Co.2 x Ramanathapuram gundu .
				yields on an average of 2.36 tonnes
		PLR 1	1994	Pureline selection yields 18.41 tonnes of
				green chillies/ha,
		CO 4	2000	Pureline selection yields 23 t/ha of green
				fruits as against 11.73 t/ha in PKM.1
		KKM(Ch)	2006	Hybrid derivative of Acc. 240 / CO-
		1		3 yields about 3.03 tonnes of dry pod /
				hectare
		CO CH 1	2010	Yield - Green fruit yield: 28.10 t/ha Dry
				fruit yield : 6.74 t/ha
15	Coccinia	CO 1		Clonal selection from Anaikatti
				type. Yield - 83.09 (t/year)
16	Coleus	CO 1	1991	Clonal selection from local type
				introduced from Tenkasi. It yields
				31.93t/ha
17	Colocasia	CO 1	1991	It yields 24.3t/ha
18	Cowpea	PKM -1	2011	Selection from a local type Green pod
				yield - 25 t/ha
19	Cucumber	CO 1	1989	Selection from a local type It yields (25-
				28 t/ha) of ripe fruits
20	Dolichos	CO 1	1993	Pureline selection. It yields 18 tonnes of
	bean		1000	green pods per hectare.
21	French beans	TKD 1	1988	Pole type selected from germplasm
		NOD 1	1004	population Dry seed yield is 2.78 t/ha.
		YCDI	1994	Pure line selection from a local yield
				potential of 9.75 tonnes of green pods
		Octry 1	1000	Pure line coloction from accession DV
		Obly 1	1999	26 It violds 22.68 t/ba
		Ooty 2		20 it yields 33.00 t/ha, Vield of 14.30 t/ha of green fruits in 90
		Obly 2		days
22	Garlic	Ooty 1	1991	Clonal selection from the germplasm
	Guine	000 1	1//1	potential vield of 17.1 t/ha
23	Greater vam	CO 1	1991	Clonal selection from the
	ground game	001		germplasm vields 44.8 tonnes of
				tubers/ha
24	Moringa	KKL 1	1996	Pureline selection from local type It
	beans			yields 7t/ha
25	Onion	CO 1	1965	Clonal selection from a germplasm type
				CS 450 yields 10t/ha
		CO 2	1975	Selection from a germplasm type C.S.
				911. yields 12t/ha
		CO 3	1979	Clonal selection from open pollinated
				progenies of C.S. 450 yields 15.8t/ha
		MDU 1	1979	Selection from the Sempatti local yield
				potential was 13,000 kg /ha.

		CO 4	1982	Hybrid derivative of the cross AC863 x
				CO.3. yields 19.0t/ha
		COOn 5	2001	Mass pedigree method of selection. yield
				18.9 t/ha
26	Palak	Ooty 1	1995	Yields 15t/ha of leaves. The carotene
				content is high.
27	Peas	Ooty 1	2000	Pureline selection (PS-33-1) crop yields
				11.1 t/ha under rainfed conditions and
				12.9 t/ha under irrigation
		Pole type		Pure line selection Yield - 33.7 t/ha
		Ooty 1		
20	Detet		1070	
28	Potato	CO Simia	1970	from CDDL viold is 12t/he
		potato		from CPRI, yield is 120/fla
29	Pumnkin	CO 1	1971	Selection from local type vields 25-30
2)	1 umphin	001	1771	t/ha.
		CO 2	1974	Yield of 22.65 t/ha.
30	Radish	CO 1	1981	Selection from germplasm type (RS 44).
31	Ribbed	CO 1	1976	It is a selection and yields 14t/ha.
	gourd			
		PKM 1	1980	Induced mutant from the type H.160. It
				yields 25-28 t/ha
		CO 2	1984	Selection from a germplasm type.
32	Snake gourd	CO 1	1976	Pureline selection yields 18.28 t/ha
		PKM 1	1979	Induced mutant from H.375 25.5 t/ha
		MDU1	1981	F1 hybrid between Panripudal and
			1001	Selection-1 yield of 31.75 t/ha
		CO 2	1986	Pureline selection from a local type It
			2005	yields on an average of 36 t/ha.
		PLR(SG) I	2007	Pure line selection from white long
		DID (SC) 2		type. yield potential of $35 - 40$ t/na
		FLK (5G) 2		white colour
33	Newzealand	OOTV (Sp)	2005	Pure line selection from germplasm
55	spinach	1	2005	types potential of 33.80 t/ha of greens
34	Sweet potato	CO 1	1976	Clonal selection (IB 3) yields on an
-				average 28.33t/ha
		CO 2	1980	Clonal selection (IB 81) Yields on an
				average of 32t/ha.
		CO 3	1982	Seedling clone (IB 2837) tubers is
				43.68t/ha
		COCIP 1	(1999)	Clonal progeny of IB 90-10-20 yields
				31.76 t/ha (tubers),
35	Таріоса	CO 1	(1977)	Clonal selection from a local type (ME
				7) yields of 29.97 tonnes of tubers per
			(100.1)	hectare
		CO 2	(1984)	Clonal selection (ME 167) yields 35-37
				t/ha

		MVD 1	(1983)	It yields 34.5t/ha in a crop duration of 9
				months.
		CO 3	(1993)	Clonal selection (ME 120-1) yields on
				an average of 42.58 t/ha of tubers under
				irrigated and 27.31 t/ha of tubers
		CO 4	(2002)	CO (TP) 4 is a clonal selection tuber
				yield of 50.6 t/ha
		CO(Tp) 5	(2007)	exotic germplasm introduced from
				CIAT, Cali, Colombia (MNga-1). tuber
				yielder (38 t/ha).
36	Tomato	CO 1	(1969)	Pureline selection isolated from
				American variety "Pearl Harbour" yield
				potential of 35 tonnes of fruits per
				hectare.
		CO 2	(1974)	Selection from a Russian Introduction.
				yields to a maximum of 41.0 tonnes of
				fruits per hectare.
		PKM 1	(1978)	Induced mutant from a local variety
				called Annanji yields on an average, 32
				t/ha
		CO3	(1980)	Induced mutation by treating the seed of
				CO.1 tomato (IM 39) with EMS.
				yielding as high as 45 tonnes of fruits
				per hectare
		Paiyur 1	(1988)	Hybrid derivative of a cross between
				Pusa Ruby and Co.3 (Marutham). yields
				about 30 tonnes per hectare
		COTH 1	(1998)	Crossing IHR 709 X LE.812 hybrid
				yields 95.9 t/ha
		COLCRH	(2006)	Hybrid developed from LCR 2 / CLN
		3		2123 A yield potential of 90.20 t/ha
		COTH 3		Crossing HN2xCLN 2123AYield - 96.2
				t/ha
37	Watermelon	PKM 1	(1993)	Selection from a local type.
III	Flower crops			
1	Barleria	CO 1	(1984)	Clonal selection from the local type.
				average 2.11 kg of flowers per plant in a
				year.
2	Chrysanthe	CO 1	(1985)	Selection made form a bulk population
	mum		(1007)	Average yield on main crop is 16.7 t/ha.
		MDU 1	(1985)	Selection from the germplasm type. I It
				yields 30.59 tonnes per hectare per year
			(1000)	in two crops
-			(1989)	Clonal selection
3	Gerbera	YCD 1	(1992)	Clonal selection from seedling from a
				mixed open pollinated seeds
		YCD 2	(1995)	Germplasm collection, 80 flowers /
			(1022)	clump
4	Gladiolus	KKL 1	(1993)	Improved selection. The selection yields

				on an average of 21.1 spikes and 19.5-
				corms/ sq.m.
5	Hibiscus	CO 1	(Thilaga	Inter-generic hybrid between <i>Hibiscus</i>
			m) (1981)	rosasinensis and Malvaviscus arboreus.
		CO 2	(1981)	Open pollinated seedlings of
		(Punnagai)		'Chandrika' variety.
		CO 3	(1984)	Clonal hybrid between Bright Yellow
				and Red Gold
6	Jathimalli	СО		Clonal selection from germplasm
		1 (1980)		collection
		СО		Induced mutant (I.M.3)
		2 (1991)		
7	Marigold	MDU 1	(1986)	Selection from a germplasm type. yield
				of 41.54 t/ha.
8	Mullai	PARIMUL	(1972)	Clonal selection from a germplasm clone
		LAI		
		CO 1	(1980)	Clonal selection from a local type.
		CO 2	(1988)	Clonal selection, It yields on an average
				of 11,198 kg of fresh flower
IV	Spice Crops		I	
1	Cinnamon	YCD 1	(1995)	Selection from the germplasm High dry
				bark yield of 359.75 quills and 3800 kg
				of dried leaves /ha
		PPI (Ci) 1	(2003)	Selection from the germplasm It yields
				about 980 kg bark / ha (248.42 kg of
	a	00.1	(1077)	quills and 731.58 kg of chips and dust)
2	Coriander	CO 1	(1977)	Selection from a germplasm type yields
			(1000)	500 kg grains per hectare.
		CO 2	(1982)	Reselection from a type P2 of
				Gujarat. yields 600 to 700kg of grains
		<u> </u>	(1001)	per nectare
		03	(1991)	Reselection from accession 695 yield
				potential of $2/3.0$ kg/ha in Kharn and $6/4$ kg/ha in Rahi saasan
		<u>CO 4</u>		Single line selection from Lam (Andhra
				Pradesh) type high vielder (500 kg/ha
				in irrigated and 540 kg/ha under rainfed)
3	Fennel	CO 1	(1985)	selection from a local type. It yields
5				566.8 kg/ha grain
4	Fenugreek	CO 1	(1982)	Reselection from a type TG 2336 yields
-	8		()	600 kg of grain/ha.
		CO 2	(1999)	Selection from germplasm collection
				(CP 390) It yields 481.8 kg/ha of grains,
5	Tamarind	PKM 1	(1992)	Clonal selection from a local type
				Endapuli. yields on an average 263.3
				kg/tree
6	Turmeric	CO 1	(1983)	Vegetative mutant selection from Erode
				local turmeric
		BSR 1	(1986)	Mutant population irradiated with X-

				ray. It yields 31 t /ha of fresh rhizomes	
				and 6 tonnes of dried rhizomes.	
		BSR 2	(1994)	Induced mutant from Erode local	
				type yields 32 t/ha	
		CO -2		Yield - 42 tonns fresh rhizome /ha	
V	Plantation Cro	ops	(100.0)		
I	Betel vine	SGM 1	(1994)	Clonal selection from a Palghat type.	
				higher leaf yield of 109 lakh leaves per	
			(2004)	hectare	
		SGM (BV)	(2004)	Pureline selection yields about 49 lakh	
2	Co alt correct		(1001)	leaves / ha / year	
2	Casnew nut	VRII	(1981)	Clonal selection from germplasm	
				accession average annual yield is 7.12	
		VDI 2	(1005)	kg per tree in a year.	
		VRI Z	(1985)	Selection from Kattupalli village in	
				chengaipattu district. yields 1750 kg ol	
		VDI 2	(1001)	$\frac{1000}{1000} \frac{1000}{1000} $	
		VKI 5	(1991)	seeding progeny (W 20-2) of a high	
				yleiding treeyleid of 14.19 kg per tree	
			(2000)	Selection from Verbisodenineleyer of	
		V NI 4	(2000)	Cuddalore crop vields 3320 kg of puts	
				per hectare	
		VRI (CW)	(2009)	Vield $_{-}$ 14.5 kg/tree 2900 kg/ba	
		H1		11010 11.5 kg/100, 2900 kg/hu	
3	Coconut	VHC 1	(1982)	Hybrid between East Coast Tall and	
				Malayan Dwarf Green. yield of 98	
				nuts/palm/year.	
		VHC 2	(1988)	East Coast Tall and Malaysian Yellow	
				100 nuts per tree per year,	
		VHC 3	(2000)	VHC 3 (East Coast Tall x Malaysian	
				Orange Dwarf) yield of 156	
				nut/palm/year and copra yield of 25.2	
				kg/palm/year	
		VPM 3	(1994)	Selection from material received from	
				CPCRyields 72-92 nuts and 15 kg copra	
				per palm per year	
		ALR (CN)	(2002)	Selection from Arasampatti	
		1		tall selection from Arasampatti tall	
		ALR 2	(2010)	Selection from Tiptur Tall Yield - 140	
				nuts / palm / year	
4	Palmyrah	SVPR 1	(1992)	Selection from Srivilliputhur local. 298	
-				litres of padaneer/tree/year.	
VI	Medicinal and Aromatic Crops				
1	Geranium	KKL 1	(1987)	Clonal selection from an Algerian	
				variety yields 45.2 tonnes of green	
				leaves per hectare	

2	Rosemary	Ooty (RM)		Selection from the seedling progenies of
		1		rosemary. crop yields an average of 12.4
				tonnes / ha of green leaves / hectare
3	Senna	KKM Se 1	(2001)	Selection from Thenkalam local yield of
				dried leaves is 712 kg/ha with a pod
				yield of 266 kg/ha
4	Thyme	OOTY (Tv	(2006)	Pureline selection from five germplasm
		1)		types yield potential of about 10.70
				tonnes of green leaves / year

